Inside the mind of an animal

Alison Abbott in Nature:

Two years ago, Jennifer Li and Drew Robson were trawling through terabytes of data from a zebrafish-brain experiment when they came across a handful of cells that seemed to be psychic. The two neuroscientists had planned to map brain activity while zebrafish larvae were hunting for food, and to see how the neural chatter changed. It was their first major test of a technological platform they had built at Harvard University in Cambridge, Massachusetts. The platform allowed them to view every cell in the larvae’s brains while the creatures — barely the size of an eyelash — swam freely in a 35-millimetre-diameter dish of water, snacking on their microscopic prey.

Out of the scientists’ mountain of data emerged a handful of neurons that predicted when a larva was next going to catch and swallow a morsel. Some of these neurons even became activated many seconds before the larva fixed its eyes on the prey1. Something else was strange. Looking in more detail at the data, the researchers realized that the ‘psychic’ cells were active for an unusually long time — not seconds, as is typical for most neurons, but many minutes. In fact, more or less the duration of the larvae’s hunting bouts.

“It was spooky,” says Li. “None of it made sense.”

Li and Robson turned to the literature and slowly realized that the cells must be setting an overall ‘brain state’ — a pattern of prolonged brain activity that primed the larvae to engage with the food in front of them. The pair learnt that, in the past few years, other scientists using various approaches and different species had also found internal brain states that alter how an animal behaves, even when nothing has changed in its external environment.

More here.