Study shows low carb diet may prevent, reverse age-related effects within the brain

From Phys.Org:

A study using neuroimaging led by Stony Brook University professor and lead author Lilianne R. Mujica-Parodi, Ph.D., and published in PNAS, reveals that neurobiological changes associated with aging can be seen at a much younger age than would be expected, in the late 40s. However, the study also suggests that this process may be prevented or reversed based on dietary changes that involve minimizing the consumption of simple carbohydrates.

To better understand how  influences  aging, the research team focused on the presymptomatic period during which prevention may be most effective. In the article titled “Diet modulates brain network stability, a biomarker for brain aging, in ,” they showed, using large-scale life span neuroimaging datasets, that functional communication between  destabilizes with age, typically in the late 40’s, and that destabilization correlates with poorer cognition and accelerates with insulin resistance. Targeted experiments then showed this biomarker for brain aging to be reliably modulated with consumption of different  sources: glucose decreases, and ketones increase, the stability of brain networks. This effect was replicated across both changes to total diet as well as after drinking a fuel-specific calorie-matched supplement.

“What we found with these experiments involves both bad and good news,” said Mujica-Parodi, a Professor in the Department of Biomedical Engineering with joint appointments in the College of Engineering & Applied Sciences and Renaissance School of Medicine at Stony Brook University, and a faculty member in the Laufer Center for Physical and Quantitative Biology. “The bad news is that we see the first signs of brain aging much earlier than was previously thought. However, the good news is that we may be able to prevent or reverse these effects with diet, mitigating the impact of encroaching hypometabolism by exchanging glucose for ketones as fuel for neurons.”

What the researchers discovered, using neuroimaging of the brain, is that quite early on there is breakdown of communication between brain regions (“network stability”).

More here.

Like what you're reading? Don't keep it to yourself!
Share on Facebook
Facebook
Tweet about this on Twitter
Twitter
Share on Reddit
Reddit
Share on LinkedIn
Linkedin
Email this to someone
email