The brain: a radical rethink is needed to understand it

Henrik Jortnell in KurzweilAI:

Neural-connectionsUnderstanding the human brain is arguably the greatest challenge of modern science. The leading approach for most of the past 200 years has been to link its functions to different brain regions or even individual neurons (brain cells). But recent research increasingly suggests that we may be taking completely the wrong path if we are to ever understand the human mind. The idea that the brain is made up of numerous regions that perform specific tasks is known as “modularity.” And, at first glance, it has been successful. For example, it can provide an explanation for how we recognise faces by activating a chain of specific brain regions in the occipital and temporal lobes. Bodies, however, are processed by a different set of brain regions. And scientists believe that yet other areas — memory regions — help combine these perceptual stimuli to create holistic representations of people. The activity of certain brain areas has also been linked to specific conditions and diseases. The reason this approach has been so popular is partly due to technologies which are giving us unprecedented insight into the brain. Functional magnetic resonance imaging (fMRI), which tracks changes in blood flow in the brain, allows scientists to see brain areas light up in response to activities — helping them map functions. Meanwhile, optogenetics, a technique that uses genetic modification of neurons so that their electrical activity can be controlled with light pulses, can help us to explore their specific contribution to brain function.

…Some researchers now believe the brain and its diseases in general can only be understood as an interplay between tremendous numbers of neurons distributed across the central nervous system. The function of any one neuron is dependent on the functions of all the thousands of neurons it is connected to. These, in turn, are dependent on those of others. The same region or the same neuron may be used across a huge number of contexts, but have different specific functions depending on the context. It may indeed be a tiny perturbation of these interplays between neurons that, through avalanche effects in the networks, causes conditions like depression or Parkinson’s disease. Either way, we need to understand the mechanisms of the networks in order to understand the causes and symptoms of these diseases. Without the full picture, we are not likely to be able to successfully cure these and many other conditions.

More here.