Is String Theory About to Unravel?

Dec15_i01_briangreene-edit.jpg__800x600_q85_cropBrian Greene at The Smithsonian:

I began learning the mathematical underpinnings of string theory during an intense period in the spring and summer of 1985. I wasn’t alone. Graduate students and seasoned faculty alike got swept up in the potential of string theory to be what some were calling the “final theory” or the “theory of everything.” In crowded seminar rooms and flyby corridor conversations, physicists anticipated the crowning of a new order.

But the simplest and most important question loomed large. Is string theory right? Does the math explain our universe? The description I’ve given suggests an experimental strategy. Examine particles and if you see little vibrating strings, you’re done. It’s a fine idea in principle, but string theory’s pioneers realized it was useless in practice. The math set the size of strings to be about a million billion times smaller than even the minute realms probed by the world’s most powerful accelerators. Save for building a collider the size of the galaxy, strings, if they’re real, would elude brute force detection.

Making the situation seemingly more dire, researchers had come upon a remarkable but puzzling mathematical fact. String theory’s equations require that the universe has extra dimensions beyond the three of everyday experience—left/right, back/forth and up/down. Taking the math to heart, researchers realized that their backs were to the wall. Make sense of extra dimensions—a prediction that’s grossly at odds with what we perceive—or discard the theory.

more here.