What makes maths beautiful?

Cal Flyn in New Humanist:

Maths-and-beautyMaryam Mirzakhani did not enjoy mathematics to begin with. She dreamed of being an author or politician, but as a top student at her all-girls school in Tehran she was still disappointed when her first-year maths exam went poorly. Her teacher believed her – wrongly – to have no particular affinity with the subject. Soon that would all change. “My first memory of mathematics is probably the time [my brother] told me about the problem of adding numbers from 1 to 100,” she recalled later. This was the story of Carl Gauss, the 18th-century genius whose schoolteacher set him this problem as a timewasting exercise – only for his precocious pupil to calculate the answer in a matter of seconds. The obvious solution is simple but slow: 1+2+3+4. Gauss’s solution is quicker to execute, and far more cunning. It goes like this: divide the numbers into two groups: from 1 to 50, and from 51 to 100. Then, add them together in pairs, starting with the lowest (1) and the highest (100), and working inwards (2+99, 3+98, and so on). There are 50 pairs; the sum of each pair is 101; the answer is 5050. “That was the first time I enjoyed a beautiful solution,” Mirzakhani told the Clay Mathematics Institute in 2008. Since then, her appreciation for beautiful solutions has taken her a long way from Farzanegan middle school. At 17 she won her first gold medal at the International Mathematics Olympiad. At 27 she earned a doctorate from Harvard University. The Blumenthal Award and Satter Prize followed, and in 2014 she became the first woman to be awarded the Fields Medal, the highest honour a mathematician can obtain.

Before this particular brand of wonder became perceptible to Mirzakhani, she experienced feelings many of us can relate to: to the indifferent, her subject can seem “cold”, even “pointless”. Yet those who persist will be rewarded with glimpses of conceptual glory, as if gifted upon them by a capricious god: “The beauty of mathematics,” she warned, “only shows itself to more patient followers.” This concept of “beauty” found in maths has been referred to over centuries by many others; though, like beauty itself, it is notoriously difficult to define. Mirzakhani has compared her work to novel-writing (“There are different characters, and you are getting to know them better”); Einstein thought it “the poetry of logical ideas”; Bertrand Russell saw this “supreme beauty” as more statuesque (“a beauty cold and austere, like sculpture… sublimely pure”). Paul Erd?s, the Hungarian mathematician, thought it futile to attempt to explain it: “It’s like asking: ‘Why is Ludwig van Beethoven’s Ninth Symphony beautiful?’ If you don’t see why, someone can’t tell you.”

More here.