Neurons at work: Research provides a clearer view of ‘alternative splicing’

Peter Reuell in the Harvard Gazette:

ScreenHunter_746 Aug. 16 19.30Film editors play a critical role by helping shape raw footage into a narrative. Part of the challenge is that their work can have a profound impact on the finished product — with just a few cuts in the wrong places, comedy can become tragedy, or vice versa.

A similar process, “alternative splicing,” is at work inside the bodies of billions of creatures — including humans. Just as a film editor can change the story with a few cuts, alternative splicing allows cells to stitch genetic information into different formations, enabling a single gene to produce up to thousands of different proteins.

Harvard scientists say they’ve now been able to observe that process within the nervous system of a living creature.

Using genetic tools to implant genes that produce fluorescent proteins in the DNA of transparent C. elegans worms, John Calarco, a Bauer Fellow at the Faculty of Arts and Sciences Center for Systems Biology, and postdoctoral researcher Adam Norris were able to gather hard evidence that the alternative splicing process frequently works differently in different types of neurons.The study was described in a recent paper in Molecular Cell.

“Splicing is an essential process in gene regulation that happens in most eukaryotic cells, all the time,” Calarco said. “It’s a fundamental part of how eukaryotic genes produce proteins, but when it goes wrong, it can lead to any number of diseases, including in the nervous system.”

On the surface, Calarco said, the splicing process is relatively simple.

More here. [Thanks to Sughra Raza.]